The search for an excluded minor characterization of ternary Rayleigh matroids

dc.comment.hiddenthe theses non-exclusive license will be sent to the GSO today-by fax or email all other changes have been made Thank you :)en
dc.contributor.authorPhillips, Stephanie
dc.date.accessioned2008-01-24T19:44:34Z
dc.date.available2008-01-24T19:44:34Z
dc.date.issued2008-01-24T19:44:34Z
dc.date.submitted2008
dc.description.abstractRayleigh matroids are a class of matroids with sets of bases that satisfy a strong negative correlation property. Interesting characteristics include the existence of an efficient algorithm for sampling the bases of a Rayleigh matroid [7]. It has been conjectured that the class of Rayleigh matroids satisfies Mason’s conjecture [14]. Though many elementary properties of Rayleigh matroids have been established, it is not known if this class has a finite set of minimal excluded minors. At this time, it seems unlikely that this is the case. It has been shown that there is a single minimal excluded minor for the smaller class of binary Rayleigh matroids [5]. The aim of this thesis is to detail our search for the set of minimal excluded minors for ternary Rayleigh matroids. We have found several minimal excluded minors for the above class of matroids. However, our search is incomplete. It is unclear whether the set of excluded minors for this set of matroids is finite or not, and, if finite, what the complete set of minimal excluded minors is. For our method to answer this question definitively will require a new computer program. This program would automate a step in our process that we have done by hand: writing polynomials in at least ten indeterminates as a sum with many terms, squared.en
dc.identifier.urihttp://hdl.handle.net/10012/3531
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectmatroidsen
dc.subjectexcluded minor characterizationen
dc.subject.programCombinatorics and Optimizationen
dc.titleThe search for an excluded minor characterization of ternary Rayleigh matroidsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesisrevised.pdf
Size:
323.83 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
269 B
Format:
Item-specific license agreed upon to submission
Description: