The Libraries will be performing routine maintenance on UWSpace on July 15th-16th, 2025. UWSpace will be available, though users may experience service lags during this time. We recommend all users avoid submitting new items to UWSpace until maintenance is completed.
 

Mathematical Aspects of Scalar-Tensor Field Theories

Loading...
Thumbnail Image

Date

2016-09-27

Authors

Horndeski, Gregory Walter

Advisor

Lovelock, Dr.

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

This thesis is based on a study of Lagrange scalar densities which are, in general, concomitants of the metric tensor gij (and its first and second derivatives) together with a scalar field ∅ (and its first derivative). Three invariance identities relating the "tensorial derivatives" of this Lagrangian are obtained. These identities are used to write the Euler-Lagrange tensors corresponding to our scalar density in a compact form. Furthermore it is shown that the Euler-Lagrange tensor corresponding to variations of the metric tensor is related to the Euler-Lagrange tensor corresponding to variations of the scalar field in a very elementary manner. The so-called Brans-Dicke scalar-tensor theory of grav­itation is a special case of our previous results and the field equations corresponding to this theory are derived and investigated at length. As a result of studying the effects of conformal transformations on the general Lagrange scalar density it is shown that solutions to the Brans-Dicke field equations are conformally related to solutions to a certain system of Einstein field equations. A detailed study of a particular static, spherically symmetric vacuum solution to the Brans-Dicke field equation is then undertaken and compared with the corresponding Einstein case.

Description

Keywords

scalar-tensor field theory, metric tensor, scalar field, Euler-Lagrange tensor, Brans-Dicke vacuum field equations, static spherically symmetric mass shell, weak field approximation

LC Subject Headings

Citation