UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Cycles and coloring in graphs and digraphs

Loading...
Thumbnail Image

Date

2022-08-22

Authors

Hompe, Patrick

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

We show results in areas related to extremal problems in directed graphs. The first concerns a rainbow generalization of the Caccetta-H\"{a}ggkvist conjecture, made by Aharoni. The Caccetta-H\"{a}ggkvist conjecture states that if $G$ is a simple digraph on $n$ vertices with minimum out-degree at least $k$, then there exists a directed cycle in $G$ of length at most $\lceil n/k \rceil$. Aharoni proposed a generalization of this well-known conjecture, namely that if $G$ is a simple edge-colored graph (not necessarily properly colored) on $n$ vertices with $n$ color classes each of size at least $k$, then there exists a rainbow cycle in $G$ of length at most $\lceil n/k \rceil$. In this thesis, we first prove that if $G$ is an edge-colored graph on $n$ vertices with $n$ color classes each of size at least $\Omega(k \log{k})$, then $G$ has a rainbow cycle of length at most $\lceil n/k \rceil$. Then, we develop more techniques to prove the stronger result that if there are $n$ color classes, each of size at least $\Omega(k)$, then there is a rainbow cycle of length at most $\lceil n/k \rceil$. Finally, we improve upon existing bounds for the triangle case, showing that if there are $n$ color classes of size at least $0.3988n$, then there exists a rainbow triangle, and also if there are $1.1077n$ color classes of size at least $n/3$, then there is a rainbow triangle. Let $\chi(G)$ denote the \emph{chromatic number} of a graph $G$ and let $\omega(G)$ denote the \emph{clique number}. Similarly, let $\dichi(D)$ denote the \emph{dichromatic number} of a digraph $D$ and let $\omega(D)$ denote the clique number of the underlying undirected graph of $D$. In the second part of this thesis, we consider questions of $\chi$-boundedness and $\dichi$-boundedness. In the undirected setting, the question of $\chi$-boundedness concerns, for a class $\mathcal{C}$ of graphs, for what functions $f$ (if any) is it true that $\chi(G) \le f(\omega(G))$ for all graphs $G \in \mathcal{C}$. In a similar way, the notion of $\dichi$-boundedness refers to, given a class $\mathcal{C}$ of digraphs, for what functions $f$ (if any) is it true that $\dichi(D) \le f(\omega(D))$ for all digraphs $D \in \mathcal{C}$. It was a well-known conjecture, sometimes attributed to Esperet, that for all $k,r \in \mathbb{N}$ there exists $n$ such that in every graph with $G$ with $\chi(G) \ge n$ and $\omega(G) \le k$, there exists an induced subgraph $H$ of $G$ with $\chi(H) \ge r$ and $\omega(H) = 2$. We disprove this conjecture. Then, we examine the class of $k$-chordal digraphs, which are digraphs such that all induced directed cycles have length equal to $k$. We show that for $k \ge 3$, the class of $k$-chordal digraphs is not $\dichi$-bounded, generalizing a result of Aboulker, Bousquet, and de Verclos in [1] for $k=3$. Then we give a hardness result for determining whether a digraph is $k$-chordal, and finally we show a result in the positive direction, namely that the class of digraphs which are $k$-chordal and also do not contain an induced directed path on $k$ vertices is $\dichi$-bounded. We discuss the work of others stemming from and related to our results in both areas, and outline directions for further work.

Description

Keywords

Structural Graph Theory, Extremal Graph Theory

LC Keywords

Citation