Numerical Methods for Hamilton-Jacobi-Bellman Equations with Applications

dc.contributor.authorChen, Yangang
dc.date.accessioned2019-08-26T18:03:23Z
dc.date.available2019-08-26T18:03:23Z
dc.date.issued2019-08-26
dc.date.submitted2019-08-20
dc.description.abstractHamilton-Jacobi-Bellman (HJB) equations are nonlinear controlled partial differential equations (PDEs). In this thesis, we propose various numerical methods for HJB equations arising from three specific applications. First, we study numerical methods for the HJB equation coupled with a Kolmogorov-Fokker-Planck (KFP) equation arising from mean field games. In order to solve the nonlinear discretized systems efficiently, we propose a multigrid method. The main novelty of our approach is that we subtract artificial viscosity from the direct discretization coarse grid operators, such that the coarse grid error estimations are more accurate. The convergence rate of the proposed multigrid method is mesh-independent and faster than the existing methods in the literature. Next, we investigate numerical methods for the HJB formulation that arises from the mass transport image registration model. We convert the PDE of the model (a Monge-Ampère equation) to an equivalent HJB equation, propose a monotone mixed discretization, and prove that it is guaranteed to converge to the viscosity solution. Then we propose multigrid methods for the mixed discretization, where we set wide stencil points as coarse grid points, use injection at wide stencil points as the restriction, and achieve a mesh-independent convergence rate. Moreover, we propose a novel periodic boundary condition for the image registration PDE, such that when two images are related by a combination of a translation and a non-rigid deformation, the numerical scheme recovers the underlying transformation correctly. Finally, we propose a deep neural network framework for the HJB equations emerging from the study of American options in high dimensions. We convert the HJB equation to an equivalent Backward Stochastic Differential Equation (BSDE), introduce the least squares residual of the BSDE as the loss function, and propose a new neural network architecture that utilizes the domain knowledge of American options. Our proposed framework yields American option prices and deltas on the entire spacetime, not only at a given point. The computational cost of the proposed approach is quadratic in dimension, which addresses the curse of dimensionality issue that state-of-the-art approaches suffer.en
dc.identifier.urihttp://hdl.handle.net/10012/14947
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectHamilton-Jacobi-Bellman equationsen
dc.subjectfinite differenceen
dc.subjectmultigrid methodsen
dc.subjectneural networksen
dc.subjectmean field gamesen
dc.subjectAmerican optionsen
dc.subjectimage registrationen
dc.titleNumerical Methods for Hamilton-Jacobi-Bellman Equations with Applicationsen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentApplied Mathematicsen
uws-etd.degree.disciplineApplied Mathematicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws.comment.hiddenI really appreciate it if you can accept my thesis (or get back to me if there is any issue) as soon as possible. Thank you!en
uws.contributor.advisorWan, Justin
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chen_Yangang.pdf
Size:
9.64 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: