On the Polyhedral Lift-and-Project Rank Conjecture for the Fractional Stable Set Polytope

Loading...
Thumbnail Image

Date

2008-01-16T16:15:58Z

Authors

Au, Yu Hin Jay

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

In this thesis, we study the behaviour of Lovasz and Schrijver's lift-and-project operators N and N_0 while being applied recursively to the fractional stable set polytope of a graph. We focus on two related conjectures proposed by Liptak and Tuncel: the N-N_0 Conjecture and Rank Conjecture. First, we look at the algebraic derivation of new valid inequalities by the operators N and N_0. We then present algebraic characterizations of these valid inequalities. Tightly based on our algebraic characterizations, we give an alternate proof of a result of Lovasz and Schrijver, establishing the equivalence of N and N_0 operators on the fractional stable set polytope. Since the above mentioned conjectures involve also the recursive applications of N and N_0 operators, we also study the valid inequalities obtained by these lift-and-project operators after two applications. We show that the N-N_0 Conjecture is false, while the Rank Conjecture is true for all graphs with no more than 8 nodes.

Description

Keywords

Lift-and-project, Stable set problem

LC Keywords

Citation