Linearly-dense classes of matroids with bounded branch-width
dc.contributor.author | Hill, Owen | |
dc.date.accessioned | 2017-09-27T20:08:52Z | |
dc.date.available | 2017-09-27T20:08:52Z | |
dc.date.issued | 2017-09-27 | |
dc.date.submitted | 2017-09-22 | |
dc.description.abstract | Let $M$ be a non-empty minor-closed class of matroids with bounded branch-width that does not contain arbitrarily large simple rank-$2$ matroids. For each non-negative integer $n$ we denote by $ex(n)$ the size of the largest simple matroid in $M$ that has rank at most $n$. We prove that there exist a rational number $\Delta$ and a periodic sequence $(a_0,a_1,\ldots)$ of rational numbers such that $ex(n) = \Delta n+a_n$ for each sufficiently large integer $n$. | en |
dc.identifier.uri | http://hdl.handle.net/10012/12487 | |
dc.language.iso | en | en |
dc.pending | false | |
dc.publisher | University of Waterloo | en |
dc.title | Linearly-dense classes of matroids with bounded branch-width | en |
dc.type | Master Thesis | en |
uws-etd.degree | Master of Mathematics | en |
uws-etd.degree.department | Combinatorics and Optimization | en |
uws-etd.degree.discipline | Accounting | en |
uws-etd.degree.grantor | University of Waterloo | en |
uws.contributor.advisor | Geelen, Jim | |
uws.contributor.affiliation1 | Faculty of Mathematics | en |
uws.peerReviewStatus | Unreviewed | en |
uws.published.city | Waterloo | en |
uws.published.country | Canada | en |
uws.published.province | Ontario | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |