Inverting Permutations In Place

dc.contributor.authorRobertson, Matthew
dc.date.accessioned2015-08-17T12:29:18Z
dc.date.available2015-08-17T12:29:18Z
dc.date.issued2015-08-17
dc.date.submitted2015
dc.description.abstractWe address the problem of quickly inverting the standard representation of a permutation on $n$ elements in place. First, we present a naive algorithm to do it using $O(\log n)$ extra bits in $O(n^2)$ time in the worst case. We then improve that algorithm, using a small bit vector, to use $O(\sqrt n)$ extra bits in $O(n \sqrt n)$ time. Using a different approach, we present an algorithm to do it using $O(\sqrt n \log n)$ extra bits in $O(n \log n)$ time. Finally, for our main result, we present a technique that leads to an algorithm to invert the standard representation of a permutation using only $O(\log^2 n)$ extra bits of space in $O(n \log n)$ time in the worst case.en
dc.identifier.urihttp://hdl.handle.net/10012/9535
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterloo
dc.subjectPermutationen
dc.subjectIn Placeen
dc.subjectInverten
dc.subject.programComputer Scienceen
dc.titleInverting Permutations In Placeen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentComputer Science (David R. Cheriton School of)en
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Robertson_Matthew.pdf
Size:
247.59 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: