Inverting Permutations In Place
dc.contributor.author | Robertson, Matthew | |
dc.date.accessioned | 2015-08-17T12:29:18Z | |
dc.date.available | 2015-08-17T12:29:18Z | |
dc.date.issued | 2015-08-17 | |
dc.date.submitted | 2015 | |
dc.description.abstract | We address the problem of quickly inverting the standard representation of a permutation on $n$ elements in place. First, we present a naive algorithm to do it using $O(\log n)$ extra bits in $O(n^2)$ time in the worst case. We then improve that algorithm, using a small bit vector, to use $O(\sqrt n)$ extra bits in $O(n \sqrt n)$ time. Using a different approach, we present an algorithm to do it using $O(\sqrt n \log n)$ extra bits in $O(n \log n)$ time. Finally, for our main result, we present a technique that leads to an algorithm to invert the standard representation of a permutation using only $O(\log^2 n)$ extra bits of space in $O(n \log n)$ time in the worst case. | en |
dc.identifier.uri | http://hdl.handle.net/10012/9535 | |
dc.language.iso | en | en |
dc.pending | false | |
dc.publisher | University of Waterloo | |
dc.subject | Permutation | en |
dc.subject | In Place | en |
dc.subject | Invert | en |
dc.subject.program | Computer Science | en |
dc.title | Inverting Permutations In Place | en |
dc.type | Master Thesis | en |
uws-etd.degree | Master of Mathematics | en |
uws-etd.degree.department | Computer Science (David R. Cheriton School of) | en |
uws.peerReviewStatus | Unreviewed | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |