Localization of cortical potentials evoked by balance disturbances

dc.contributor.authorMarlin, Amanda
dc.date.accessioned2011-09-26T17:38:57Z
dc.date.available2011-09-26T17:38:57Z
dc.date.issued2011-09-26T17:38:57Z
dc.date.submitted2011
dc.description.abstractThe ability to correct balance disturbances is essential for maintaining upright stability. Recent literature highlights a potentially important role for the cerebral cortex in controlling compensatory balance reactions. The objective of this research was to provide a more detailed understanding of the specific neurophysiologic events occurring at the cortex following balance disturbances. More specifically, the focus was to determine whether the N1, a cortical potential evoked during balance control, and the error-related negativity (ERN), a cortical potential measured in response to errors during cognitive tasks, have similar cortical representation, revealing a similar link to an error detection mechanism. It was hypothesized that the N1 and ERN would have the same generator located in the anterior cingulate cortex (ACC). Fourteen healthy young adults participated in a balance task (evoked N1) and a flanker task (evoked ERN). Temporally unpredictable perturbations to standing balance were achieved using a lean and release cable system. Electromyography and centre of pressure were measured during the balance task. Reaction times and error rates were measured during the flanker task. Electroencephalography was recorded during both tasks. Source localization was performed in CURRY 6 using a single fixed coherent dipole model to determine the neural generator of the N1 and ERN. The results revealed that the locations of the N1 and ERN dipoles were different. The mean (n=9) distance between N1 and ERN dipoles was 25.46 ± 8.88 mm. The mean Talairach coordinates for the ERN dipole were (6.47 ± 3.08, -4.41 ± 13.15, 41.17 ± 11.63) mm, corresponding to the cingulate gyrus (Brodmann area 24). This represents the ACC, supporting results from previous literature. The mean Talairach coordinates for the N1 dipole were (5.74 ± 3.77, -11.81 ± 10.84, 53.73 ± 7.30) mm, corresponding to the medial frontal gyrus (Brodmann area 6). This is the first work to localize the source of the N1. It is speculated that the generator of the N1 is the supplementary motor area and that it represents the generation of a contingency motor plan to shape the later phases of the compensatory balance response based on sensory feedback from the perturbation.en
dc.identifier.urihttp://hdl.handle.net/10012/6266
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectCompensatory balance reactionen
dc.subjectCerebral cortexen
dc.subjectEvent-related potentialen
dc.subjectN1 responseen
dc.subjectElectroencephalographyen
dc.subjectDipole source localizationen
dc.subject.programKinesiology (Behavioural Neuroscience)en
dc.titleLocalization of cortical potentials evoked by balance disturbancesen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentKinesiologyen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Marlin_Amanda.pdf
Size:
6.11 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
249 B
Format:
Item-specific license agreed upon to submission
Description: