The Model Theory of Algebraically Closed Fields
dc.contributor.author | Cook, Daniel | en |
dc.date.accessioned | 2006-08-22T14:27:22Z | |
dc.date.available | 2006-08-22T14:27:22Z | |
dc.date.issued | 2000 | en |
dc.date.submitted | 2000 | en |
dc.description.abstract | Model theory can express properties of algebraic subsets of complex n-space. The constructible subsets are precisely the first order definable subsets, and varieties correspond to maximal consistent collections of formulas, called types. Moreover, the topological dimension of a constructible set is equal to the Morley rank of the formula which defines it. | en |
dc.format | application/pdf | en |
dc.format.extent | 490200 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/10012/1066 | |
dc.language.iso | en | en |
dc.pending | false | en |
dc.publisher | University of Waterloo | en |
dc.rights | Copyright: 2000, Cook, Daniel. All rights reserved. | en |
dc.subject | Mathematics | en |
dc.subject | model theory | en |
dc.subject | fields | en |
dc.subject | algebraically closed | en |
dc.subject | dimension | en |
dc.subject | Morley rank | en |
dc.title | The Model Theory of Algebraically Closed Fields | en |
dc.type | Master Thesis | en |
uws-etd.degree | Master of Mathematics | en |
uws-etd.degree.department | Pure Mathematics | en |
uws.peerReviewStatus | Unreviewed | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |
Files
Original bundle
1 - 1 of 1