The University of Waterloo Libraries will be performing maintenance on UWSpace tomorrow, November 5th, 2025, from 10 am – 6 pm EST.
UWSpace will be offline for all UW community members during this time. Please avoid submitting items to UWSpace until November 7th, 2025.

Thomassen’s 5-Choosability Theorem Extends to Many Faces

Loading...
Thumbnail Image

Authors

Nevin, Joshua

Advisor

Richter, Bruce

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

We prove in this thesis that planar graphs can be L-colored, where L is a list-assignment in which every vertex has a 5-list except for a collection of arbitrarily large faces which have 3-lists, as long as those faces are at least a constant distance apart. Such a result is analogous to Thomassen’s 5-choosability proof where arbitrarily many faces, rather than just one face, are permitted to have 3-lists. This result can also be thought of as a stronger form of a conjecture of Albertson which was solved in 2012 and asked whether a planar graph can be 5-list-colored even if it contains distant precolored vertices. Our result has useful applications in proving that drawings with arbitrarily large pairwise far-apart crossing structures are 5-choosable under certain conditions, and we prove one such result at the end of this thesis.

Description

LC Subject Headings

Citation