The Normal Distribution of ω(φ(m)) in Function Fields

dc.contributor.authorLi, Li
dc.date.accessioned2008-01-28T20:39:15Z
dc.date.available2008-01-28T20:39:15Z
dc.date.issued2008-01-28T20:39:15Z
dc.date.submitted2007
dc.description.abstractLet ω(m) be the number of distinct prime factors of m. A celebrated theorem of Erdös-Kac states that the quantity (ω(m)-loglog m)/√(loglog m) distributes normally. Let φ(m) be Euler's φ-function. Erdös and Pomerance proved that the quantity(ω(φ(m)-(1/2)(loglog m)^2)\((1/√(3)(loglog m)^(3/2)) also distributes normally. In this thesis, we prove these two results. We also prove a function field analogue of the Erdös-Pomerance Theorem in the setting of the Carlitz module.en
dc.identifier.urihttp://hdl.handle.net/10012/3567
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectNumber Theoryen
dc.subject.programPure Mathematicsen
dc.titleThe Normal Distribution of ω(φ(m)) in Function Fieldsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentPure Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis8.pdf
Size:
358.72 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
246 B
Format:
Item-specific license agreed upon to submission
Description: