Degrees of P -Grothendieck polynomials and regularity of Pfaffian varieties

dc.contributor.authorSt.Denis, Matthew
dc.date.accessioned2024-08-23T13:38:53Z
dc.date.available2024-08-23T13:38:53Z
dc.date.issued2024-08-23
dc.date.submitted2024-08-21
dc.description.abstractWe prove a formula for the degrees of Ikeda and Naruse’s P -Grothendieck polynomials using combinatorics of shifted tableaux. We show this formula can be used in conjunction with results of Hamaker, Marberg, and Pawlowski to obtain an upper bound on the Castelnuovo–Mumford regularity of certain Pfaffian varieties known as vexillary skew-symmetric matrix Schubert varieties. Similar combinatorics additionally yields a new formula for the degree of Grassmannian Grothendieck polynomials and the regularity of Grassmannian matrix Schubert varieties, complementing a 2021 formula of Rajchgot, Ren, Robichaux, St. Dizier, and Weigandt.
dc.identifier.urihttps://hdl.handle.net/10012/20860
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleDegrees of P -Grothendieck polynomials and regularity of Pfaffian varieties
dc.typeMaster Thesis
uws-etd.degreeMaster of Mathematics
uws-etd.degree.departmentCombinatorics and Optimization
uws-etd.degree.disciplineCombinatorics and Optimization
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.comment.hiddenFixed inconsistency between American and British spellings in last rejection. "Acknowledgements" is now "Acknowledgments".
uws.contributor.advisorPechenik, Oliver
uws.contributor.affiliation1Faculty of Mathematics
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
StDenis_Matthew.pdf
Size:
525.91 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: