UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

On imprecision in statistical theory

dc.contributor.authorShum, Marco Yan Shing
dc.date.accessioned2022-01-06T14:59:32Z
dc.date.available2022-01-06T14:59:32Z
dc.date.issued2022-01-06
dc.date.submitted2021-12-23
dc.description.abstractThis thesis provides an exploration of the interplay between imprecise probability and statistics. Mathematically, one may summarise this relationship as how (Bayesian) sensitivity analysis involving a set of (prior) models can be done in relation to the notion of coherence in the sense of de Finetti [32], Williams [84] and, more recently, Walley [81]. This thesis explores how imprecise probability can be applied to foundational statistical problems. The contributions of this thesis are three folds. In Chapter 1, we illustrate and motivate the need for imprecise models due to certain inherent limitations of elicitation of a statistical model. In Chapter 2, we provide a primer of imprecise probability aimed at the statistics audience along with illustrative statistical examples and results that highlight salient behaviours of imprecise models from the the statistical perspective. In the second part of the thesis (Chapters 3, 4, 5), we consider the statistical application of the imprecise Dirichlet model (IDM), an established model in imprecise probability. In particular, the posterior inference for log-odds statistics under sparse contingency tables, the development and use of imprecise interval estimates via quantile intervals over a set of distributions and the geometry of the optimisation problem over a set of distributions are studied. Some of these applications require extensions of Walley’s existing framework, and are presented as part of our contribution. The third part of the thesis (Chapters 6, 7) departs from the IDM parametric assumption and instead focuses on posterior inference using imprecise models in a finite dimensional setting when the lower bound of the probability of the data over a set of elicited priors is zero. This setting generalises the problem of zero marginal probability in Bayesian analysis. In Chapter 6, we explore the methodology, behaviour and interpretability of the posterior inference under two established models in imprecise probability: the vacuous and regular extensions. In Chapter 7, we note that these extensions are in fact extremes in imprecision, the variability of an inference over the elicited set of probability distributions. Then we consider extensions which are of intermediate levels of imprecision, and discuss their elicitation and assessment.en
dc.identifier.urihttp://hdl.handle.net/10012/17834
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectimprecise probabilityen
dc.subjectimprecise probabilitiesen
dc.subjectstatisticsen
dc.subjectinferenceen
dc.subjectstatistical inferenceen
dc.subjectcoherenceen
dc.titleOn imprecision in statistical theoryen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentStatistics and Actuarial Scienceen
uws-etd.degree.disciplineStatisticsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorMarriott, Paul
uws.contributor.advisorWirjanto, Tony
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
shum_marcoyanshing.pdf
Size:
2.58 MB
Format:
Adobe Portable Document Format
Description:
Thesis
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: