UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Unsupervised Spectral Ranking For Anomaly Detection

dc.contributor.authorNian, Ke
dc.date.accessioned2014-09-10T19:08:38Z
dc.date.available2014-09-10T19:08:38Z
dc.date.issued2014-09-10
dc.date.submitted2014
dc.description.abstractAnomaly detection is the problem of finding deviations from expected normal patterns. A wide variety of applications, such as fraud detection for credit cards and insurance, medical image monitoring, network intrusion detection, and military surveillance, can be viewed as anomaly detection. For anomaly detection, obtaining accurate labels, especially labels for anomalous cases, is costly and time consuming, if not practically infeasible. This makes supervised anomaly detection less desirable in the domain of anomaly detection. In this thesis, we propose a novel unsupervised spectral ranking method for anomaly detection (SRA). Based on the 1st non-principal eigenvectors from Laplacian matrices, the proposed SRA can generate anomaly ranking either with respect to a single majority class or with respect to multiple majority classes. The ranking type is based on whether the percentage of the smaller class instances (positive or negative) is larger than the expected upper bound of the anomaly ratio. We justify the proposed spectral ranking by establishing a connection between the unsupervised support vector machine optimization and the spectral Laplacian optimization problem. Using both synthetic and real data sets, we show that our proposed SRA is a meaningful and effective alternative to the state-of-art unsupervised anomaly ranking methods. In addition, we show that, in certain scenarios, unsupervised SRA method surpasses the state-of-art unsupervised anomaly ranking methods in terms of performance and robustness of parameter tuning. Finally, we demonstrate that choosing appropriate similarity measures remains crucial in applying our proposed SRA algorithm.en
dc.identifier.urihttp://hdl.handle.net/10012/8782
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectSpectral Clusteringen
dc.subjectAnomaly Detectionen
dc.subjectUnsupervised Learningen
dc.subjectMachine Learningen
dc.subject.programComputer Scienceen
dc.titleUnsupervised Spectral Ranking For Anomaly Detectionen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentSchool of Computer Scienceen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nian_Ke.pdf
Size:
11.18 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.67 KB
Format:
Item-specific license agreed upon to submission
Description: