Development of Improved Graphene Production and Three-dimensional Architecture for Application in Electrochemical Capacitors

dc.comment.hiddenWhere necessary, permissions from the publishers of my work have been acquired before submission. Similar reprint permissions have been gathered for figures and other content used in the background material.en
dc.contributor.authorChabot, Victor
dc.date.accessioned2013-08-30T14:05:38Z
dc.date.available2013-08-30T14:05:38Z
dc.date.issued2013-08-30T14:05:38Z
dc.date.submitted2013
dc.description.abstractIncreasing energy demand makes the development of higher energy storage batteries, imperative. However, one of the major advantages of fossil fuels as an energy source is they can provide variably large quantities of power when desired. This is where electrochemical capacitors can continue to carve out a niche market supplying moderate energy storage, but with high specific power output. However, current issues with carbon precursors necessitate further development. Further, production requires high temperature, energy intensive carbonization to create the active pore sites and develop the pores. Double-layer capacitive materials researched to replace active carbons generally require properties that include: very high surface area, high pore accessibility and wettability, strong electrical conductivity, structural stability, and optionally reversible functional groups that lend to energy storage through pseudocapacitive mechanisms. In recent years, nanostructured carbon materials which could in future be tailored through bottom up processing have the potential to exhibit favourable properties have also contributed to the growth in this field. This thesis presents research on graphene, an emerging 2-dimensional carbon material. So far, production of graphene in bulk exhibits issues including restacking, structural damage and poor exfoliation. However, the high chemical stability, moderate conductivity and high electroactive behaviour even with moderate exposed surface area makes them an excellent standalone material or a potential support material. Two projects presented focus on enhancing the capacitance through functionality and controlling graphene formation to enhance performance. The first study addresses graphene enhancement possible with heteroatom functionality, produced by a single step low temperature hydrothermal reduction process. The dopant methodology was successful in adding nitrogen functionality to the reduced graphene oxide basal and the effect of nitrogen type was considered. The second study addresses the need for greater control of the rGO structure on the macro-scale. By harnessing the change in interactions between the GO intermediate and final rGO sheets we were able to successfully control the assembly of graphene, creating micro and macro-pore order and high capacitive performance. Further, self assembly directly onto the current collector eliminates process steps involved in the production of EDLC electrodes.en
dc.identifier.urihttp://hdl.handle.net/10012/7779
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectGrapheneen
dc.subjectAssemblyen
dc.subject.programChemical Engineering (Nanotechnology)en
dc.titleDevelopment of Improved Graphene Production and Three-dimensional Architecture for Application in Electrochemical Capacitorsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentChemical Engineeringen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chabot_Victor.pdf
Size:
2.95 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
250 B
Format:
Item-specific license agreed upon to submission
Description: