Universal Control in 1e-2n Spin System Utilizing Anisotropic Hyperfine Interactions

dc.contributor.authorZhang, Yingjie
dc.date.accessioned2010-09-30T22:47:17Z
dc.date.available2010-09-30T22:47:17Z
dc.date.issued2010-09-30T22:47:17Z
dc.date.submitted2010
dc.description.abstractESR quantum computing presents faster means to perform gates on nuclear spins than the traditional NMR methods. This means ESR is a test-bed that can potentially be useful in ways that are not possible with NMR. The first step is to demonstrate universal control in the ESR system. This work focuses on spin systems with one electron spin and two nuclear spins. We try to demonstrate control over the nuclear spins using the electron as an actuator. In order to perform the experiments, a customized ESR spectrometer was built in the lab. The main advantage of the home-built system is the ability to send arbitrary pulses to the spins. This ability is the key to perform high fidelity controls on the spin system. A customized low temperature probe was designed and built to have three features necessary for the experiments. First, it is possible to orient the sample, thus to change the spin Hamiltonian of the system, in situ. Second, the combined system is able to perform ESR experiments at liquid nitrogen and liquid helium temperatures and rotate the sample while it is cold. Last, the pulse bandwidth of the microwave resonator, which directly affects the fidelity of the gates, is held constant with respect to the sample temperature. Simulations of the experiments have been carried out and the results are promising. Preliminary experiments have been performed, the final set of experiments, demonstrating full quantum control of a three-spin system, are underway at present.en
dc.identifier.urihttp://hdl.handle.net/10012/5572
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectESRen
dc.subjectquantum computingen
dc.subjecthyperfineen
dc.subjectuniversal controlen
dc.subject.programPhysicsen
dc.titleUniversal Control in 1e-2n Spin System Utilizing Anisotropic Hyperfine Interactionsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentPhysics and Astronomyen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhang_Yingjie.pdf
Size:
1009.98 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
250 B
Format:
Item-specific license agreed upon to submission
Description: