Polyhedral Diameters and Applications to Optimization

dc.contributor.authorKafer, Sean
dc.date.accessioned2022-09-01T19:18:45Z
dc.date.available2022-09-01T19:18:45Z
dc.date.issued2022-09-01
dc.date.submitted2022-08-28
dc.description.abstractThe Simplex method is the most popular algorithm for solving linear programs (LPs). Geometrically, it moves from an initial vertex solution to an improving neighboring one, selected according to a pivot rule. Despite decades of study, it is still not known whether there exists a pivot rule that makes the Simplex method run in polynomial time. Circuit-augmentation algorithms are generalizations of the Simplex method, where in each step one is allowed to move along a fixed set of directions, called the circuits, that is a superset of the edges of a polytope. The number of circuit augmentations has been of interest as a proxy for the number of steps in the Simplex method, and the circuit-diameter of polyhedra has been studied as a lower bound to the combinatorial diameter of polyhedra. We show that in the circuit-augmentation framework the Greatest Improvement and Dantzig pivot rules are NP-hard, even for 0/1 LPs. On the other hand, the Steepest Descent pivot rule can be carried out in polynomial time in the 0/1 setting, and the number of circuit augmentations required to reach an optimal solution according to this rule is strongly-polynomial for 0/1 LPs. We introduce a new rule in the circuit-augmentation framework which we call Asymmetric Steepest Descent. We show both that it can be computed in polynomial time and that it reaches an optimal solution of an LP in a polynomial number of augmentations. It was not previously known that such a rule was possible. We further show a weakly-polynomial bound on the circuit diameter of rational polyhedra. We next show that the circuit-augmentation framework can be exploited to make novel conclusions about the classical Simplex method itself: In particular, as a byproduct of our circuit results, we prove that (i) computing the shortest (monotone) path to an optimal solution on the 1-skeleton of a polytope is NP-hard, and hard to approximate within a factor better than 2, and (ii) for 0/1-LPs (i.e., those whose vertex solutions are in {0, 1}^n), a monotone path of strongly-polynomial length can be constructed using steepest improving edges. Inspired by this, we further examine the lengths of other monotone paths generated by some local decision rules – which we call edge rules – including two modifications of the classical Shadow Vertex pivot rule. We leverage the techniques we use for analyzing edge rules to devise pivot rules for the Simplex method on 0/1-LPs that generate the same monotone paths as their edge rule counterparts. In particular, this shows that there exist pivot rules for the Simplex method on 0/1 LPs that reach an optimal solution by performing only a polynomial number of non-degenerate pivots, answering an open question in the literature.en
dc.identifier.urihttp://hdl.handle.net/10012/18705
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectlinear programmingen
dc.subjectcombinatorial optimizationen
dc.subjectSimplexen
dc.subjectcircuit diameteren
dc.subjectcombinatorial diameteren
dc.subjectmonotone diameteren
dc.titlePolyhedral Diameters and Applications to Optimizationen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws-etd.degree.disciplineCombinatorics and Optimizationen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorSanita, Laura
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kafer_Sean.pdf
Size:
696.73 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: