Decay Makes Supervised Predictive Coding Generative

dc.contributor.authorSun, Wei
dc.date.accessioned2020-08-19T20:43:31Z
dc.date.available2020-08-19T20:43:31Z
dc.date.issued2020-08-19
dc.date.submitted2020-08-17
dc.description.abstractPredictive Coding is a hierarchical model of neural computation that approximates backpropagation using only local computations and local learning rules. An important aspect of Predictive Coding is the presence of feedback connections between layers. These feedback connections allow Predictive Coding networks to potentially be generative as well as discriminative. However, Predictive Coding networks trained on supervised classification tasks cannot generate accurate input samples close to the training inputs from the class vectors alone. This problem arises from the fact that generating inputs from classes requires solving an underdetermined system, which contains an infinite number of solutions. Generating the correct inputs involves reaching a specific solution in that infinite solution space. But by imposing a minimum-norm constraint on the state nodes and the synaptic weights of a Predictive Coding network, the solution space collapses to a unique solution that is close to the training inputs. This minimum-norm constraint can be enforced by adding decay to the Predictive Coding equations. Decay is implemented in the form of weight decay and activity decay. Analyses done on linear Predictive Coding networks show that applying weight decay during training helps the network learn weights that can generate the correct input samples from the class vectors, while applying activity decay during input generation helps to lower the variance in the network's generated samples. Additionally, weight decay regularizes the values of the network weights, avoiding extreme values, and improves the rate at which the network converges to equilibrium by regularizing the eigenvalues of the Jacobian at the equilibrium. Experiments on the MNIST dataset of handwritten digits provide evidence that decay makes Predictive Coding networks generative even when the network contains deep layers and uses nonlinear tanh activations. A Predictive Coding network equipped with weight and activity decay successfully generates images resembling MNIST digits from the class vectors alone.en
dc.identifier.urihttp://hdl.handle.net/10012/16141
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.relation.urihttps://github.com/jorchard/peBogaczen
dc.subjectneural networken
dc.subjectpredictive codingen
dc.subjectweight decayen
dc.subjectregularizationen
dc.subjectsupervised learningen
dc.subjectgenerativeen
dc.titleDecay Makes Supervised Predictive Coding Generativeen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorOrchard, Jeff
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sun_Wei.pdf
Size:
2.06 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: