Valuation of in-situ Building Materials for Resource Recovery

dc.contributor.authorMollaei, Aida
dc.date.accessioned2024-02-08T18:59:36Z
dc.date.available2024-02-08T18:59:36Z
dc.date.issued2024-02-08
dc.date.submitted2024-02-06
dc.description.abstractThe construction industry is among the largest contributors to global raw material consumption and is responsible for 40% of annual greenhouse gas emissions. Recovery of building materials at the end of a building's life, often seen as a common circular approach, can help mitigate the environmental impacts within this sector. However, the feasibility of recovering in-situ building materials is dependent on various technical, operational, financial, environmental, and regulatory factors, making the implementation of resource recovery complex and challenging. The main objective of this research is to develop methodologies that improve the recovery of building materials at end-of-life through assessment of the value of in-situ building materials. At the core of this research, a decision support tool is developed that incorporates the main factors that impact the value of materials embedded in buildings. The tool is designed based on a multi-objective optimization model that estimates optimal end-of-life options for building components. Throughout this research, the tool is applied to various case studies and analyzed through sensitivity analyses. Using the developed tool, a novel methodology is proposed to assess the efficacy of policies focused on deconstruction and building recovery. Following that, the impact of regional factors such as labour costs, material markets, and socioeconomic factors, are assessed on building end-of-life strategies. The findings underscore the necessity of tailored policies and regulations to effectively reduce waste generation within specific regional contexts. Finally, expanding the applicability of the developed tool on future building stocks, a methodology aimed at evaluating circular design and construction strategies on the recovery potential of buildings is provided. This thesis contributes to the development of optimized material recovery processes that result in waste reduction and carbon emission mitigation. Realizing the recovery potential of building materials is a pivotal step towards fostering a more circular construction sector.en
dc.identifier.urihttp://hdl.handle.net/10012/20337
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectmaterials recoveryen
dc.subjectreuseen
dc.subjectcircular economyen
dc.subjectbuilt environmenten
dc.subjectoptimizationen
dc.subjectpolicy analysisen
dc.subjectbuildingsen
dc.subjectdeconstructionen
dc.subjectdisassemblyen
dc.subjectdemolitionen
dc.subjectwasteen
dc.subjectconstructionen
dc.titleValuation of in-situ Building Materials for Resource Recoveryen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentCivil and Environmental Engineeringen
uws-etd.degree.disciplineCivil Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorHaas, Carl
uws.contributor.advisorBachmann, Chris
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mollaei_Aida.pdf
Size:
4.03 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: