The Edmonds-Giles Conjecture and its Relaxations

dc.contributor.authorHwang, Steven
dc.date.accessioned2022-12-23T14:47:13Z
dc.date.available2022-12-23T14:47:13Z
dc.date.issued2022-12-23
dc.date.submitted2022-12-21
dc.description.abstractGiven a directed graph, a directed cut is a cut with all arcs oriented in the same direction, and a directed join is a set of arcs which intersects every directed cut at least once. Edmonds and Giles conjectured for all weighted directed graphs, the minimum weight of a directed cut is equal to the maximum size of a packing of directed joins. Unfortunately, the conjecture is false; a counterexample was first given by Schrijver. However its ”dual” statement, that the minimum weight of a dijoin is equal to the maximum number of dicuts in a packing, was shown to be true by Luchessi and Younger. Various relaxations of the conjecture have been considered; Woodall’s conjecture remains open, which asks the same question for unweighted directed graphs, and Edmond- Giles conjecture was shown to be true in the special case of source-sink connected directed graphs. Following these inquries, this thesis explores different relaxations of the Edmond- Giles conjecture.en
dc.identifier.urihttp://hdl.handle.net/10012/19001
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectpackingen
dc.subjectcoveringen
dc.subjectdijoinsen
dc.titleThe Edmonds-Giles Conjecture and its Relaxationsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws-etd.degree.disciplineCombinatorics and Optimizationen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorGuenin, Bertrand
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hwang_Steven.pdf
Size:
409.8 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: