Optimal trajectory calculation using neural networks

dc.contributor.authorMajumder, Sounak
dc.date.accessioned2024-01-08T19:21:25Z
dc.date.available2024-01-08T19:21:25Z
dc.date.issued2024-01-08
dc.date.submitted2023-12-30
dc.description.abstractOptimal control methods for linear systems have reached a substantial level of maturity, both in terms of conceptual understanding and scalable computational implementation. For non-linear systems, an open-loop feedback control may be calculated using Pontryagin's Maximum Principle. Alternatively, the Hamilton-Jacobi-Bellman (HJB) equation may be used to calculate the optimal control in a state-feedback form. However, it is an established fact that this equation becomes progressively harder to solve as the number of state variables increases. In this thesis, we discuss a Neural Network (NN)-based method [1] to approximate the solution to the HJB equation arising from high-dimensional ODE systems. We leverage the equivalency between the HJB equation and Pontryagin's Principle to generate the training and test datasets and define a physics-based loss function. The NN is then trained using a supervised optimization approach. We also examine an existing toolkit [2] to approximate the optimal control based on a power series expansion of the system around an equilibrium point in an infinite time horizon setting. We examine the possibility of incorporating this toolkit in the NN training procedure at different stages. The proposed methods are applied to three problems: optimal control of a 6 degree-of-freedom rigid body and the stabilization of ODE systems arising from the discretization of a Burgers'-like non-linear PDE and the damped wave equation. References: [1] Tenavi Nakamura-Zimmerer, Qi Gong, and Wei Kang. Adaptive deep learning for high-dimensional Hamilton-Jacobi-Bellman equations. SIAM Journal of Scientific Computing, 43(2):A1221–A1247, 2021. [2] Arthur J. Krener. Nonlinear systems toolbox v.1.0, 1997. MATLAB based toolbox available by request from ajkrener@ucdavis.eduen
dc.identifier.urihttp://hdl.handle.net/10012/20219
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleOptimal trajectory calculation using neural networksen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentApplied Mathematicsen
uws-etd.degree.disciplineApplied Mathematicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorMorris, Kirsten
uws.contributor.advisorGuglielmi, Roberto
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Majumder_Sounak.pdf
Size:
1.97 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: