Straight Line Movement in Morphing and Pursuit Evasion
Loading...
Date
2017-10-24
Authors
Vosoughpour Yazdchi, Hamideh
Advisor
Lubiw, Anna
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
Piece-wise linear structures are widely used to define problems and to represent simplified
solutions in computational geometry. A piece-wise linear structure consists of straight-line
or linear pieces connected together in a continuous geometric environment like 2D or 3D
Euclidean spaces. In this thesis two different problems both with the approach of finding
piece-wise linear solutions in 2D space are defined and studied: straight-line pursuit evasion
and straight-line morphing.
Straight-line pursuit evasion is a geometric version of the famous cops and robbers game
that is defined in this thesis for the first time. The game is played in a simply connected
region in 2D. It is a full information game where the players take turns. The cop’s goal
is to catch the robber. In a turn, each player may move any distance along a straight
line as long as the line segment connecting their current location to the new location is
not blocked by the region’s boundary. We first prove that the cop can always win the
game when the players move on the visibility graph of a simple polygon. We prove this by
showing that the visibility graph of a simple polygon is “dismantlable” (the known class of
cop-win graphs). Polygon visibility graphs are also shown to be 2-dismantlable. Two other
settings of the game are also studied in this thesis: when the players are free to move on
the infinitely many points inside a simple polygon, and inside a splinegon. In both cases
we show that the cop can always win the game. For the case of polygons, the proposed cop
strategy gives an asymptotically tight linear bound on the number of steps the cop needs
to catch the robber. For the case of splinegons, the cop may need a quadratic number of
steps with the proposed strategy, while our best lower bound is linear.
Straight-line morphing is a type of morphing first defined in this thesis that provides a
nice and smooth transformation between straight-line graph drawings in 2D. In straight-
line morphing, each vertex of the graph moves forward along the line segment connecting
its initial position to its final position. The vertex trajectories in straight-line morphing
are very simple, but because the speed of each vertex may vary, straight-line morphs are
more general than the commonly used “linear morphs” where each vertex moves at uniform
speed. We explore the problem of whether an initial planar straight-line drawing of a graph
can be morphed to a final straight-line drawing of the graph using a straight-line morph
that preserves planarity at all times. We prove that this problem is NP-hard even for
the special case where the graph drawing consists of disjoint segments. We then look at
some restricted versions of the straight-line morphing: when only one vertex moves at a
time, when the vertices move one by one to their final positions uninterruptedly, and when
the edges morph one by one to their final configurations in the case of disjoint segments.
Some of the variations are shown to be still NP-complete while some others are solvable
in polynomial time. We conjecture that the class of planar straight-line morphs is as
powerful as the class of planar piece-wise linear straight-line morphs. We also explore
a simpler problem where for each edge the quadrilateral formed by its initial and final
positions together with the trajectories of its two vertices is convex. There is a necessary
condition for this case that we conjecture is also sufficient for paths and cycles.
Description
Keywords
Pursuit Evasion, Cops and Robbers, Visibility Graphs, Morphing