Strong Morita Equivalence and Imprimitivity Theorems

dc.contributor.advisorDavidson, Kenneth
dc.contributor.authorKim, Se-Jin
dc.date.accessioned2016-09-15T15:26:46Z
dc.date.available2016-09-15T15:26:46Z
dc.date.issued2016-09-15
dc.date.submitted2016-09-07
dc.description.abstractThe purpose of this thesis is to give an exposition of two topics, mostly following the books \cite{R & W} and \cite{Wil}. First, we wish to investigate crossed product $C^*$-algebras in its most general form. Crossed product $C^*$-algebras are $C^*$-algebras which encode information about the action of a locally compact Hausdorff group $G$ as automorphisms on a $C^*$-algebra $A$. One of the prettiest example of such a dynamical system that I have observed in the wild arises in the gauge-invariant uniqueness theorem \cite{Rae}, which assigns to every $C^*$-algebra $C^*(E)$ associated with a graph $E$ a \emph{gauge action} of the unit circle $\T$ to automorphisms on $C^*(E)$. Group $C^*$-algebras also arise as a crossed product of a dynamical system. I found crossed products in its most general form very abstract and much of its constructions motivated by phenomena in a simpler case. Because of this, much of the initial portion of this exposition is dedicated to the action of a discrete group on a unital $C^*$-algebra, where most of the examples are given. I must admit that I find calculations of crossed products when one has an indiscrete group $G$ acting on our $C^*$-algebra daunting except under very simple cases. This leads to our second topic, on imprimitivity theorems of crossed product $C^*$-algebras. Imprimitivity theorems are machines that output (strong) Morita equivalences between crossed products. Morita equivalence is an invariant on $C^*$-algebras which preserve properties like the ideal structure and the associated $K$-groups. For example, no two commutative $C^*$-algebras are Morita equivalent, but $C(X) \otimes M_n$ is Morita equivalent to $C(X)$ whenever $n$ is a positive integer and $X$ is a compact Hausdorff space. Notice that Morita equivalence can be used to prove that a given $C^*$-algebra is simple. All this leads to our concluding application: Takai duality. The set-up is as follows: we have an action $\alpha$ of an abelian group $G$ on a $C^*$-algebra $A$. On the associated crossed product $A \rtimes_\alpha G$, there is a dual action $\Hat{\alpha}$ from the Pontryagin dual $\Hat{G}$. Takai duality states that the iterated crossed product $(A \rtimes_\alpha G) \rtimes \Hat{G}$ is isomorphic to $A \otimes \calK(L^2(G))$ in a canonical way. This theorem is used to show for example that all graph $C^*$-algebras are nuclear or to establish theorems on the $K$-theory on crossed product $C^*$-algebras.en
dc.identifier.urihttp://hdl.handle.net/10012/10854
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectHarmonic Analysisen
dc.subjectDynamical Systemsen
dc.subjectOperator Theoryen
dc.titleStrong Morita Equivalence and Imprimitivity Theoremsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentPure Mathematicsen
uws-etd.degree.disciplinePure Mathematicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorDavidson, Kenneth
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kim_Se-Jin.pdf
Size:
838.1 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: