Towards the development of an all-optical, non-contact, photon absorption remote sensing (PARS) endomicroscope for blood vasculature imaging

dc.contributor.authorWarren, Alkris
dc.date.accessioned2025-05-06T14:33:54Z
dc.date.available2025-05-06T14:33:54Z
dc.date.issued2025-05-06
dc.date.submitted2025-04-30
dc.description.abstractThe need for high-resolution, label-free imaging techniques has spurred the development of advanced endoscopic technologies for real-time tissue characterization. This thesis presents the design, development, and validation of the first forward-viewing, non-contact, all-optical Photon Absorption Remote Sensing (PARS) endomicroscope for in vivo vascular imaging. The proposed system is designed to leverage the endogenous optical absorption of hemoglobin to achieve high-resolution contrast, without the use of exogenous labels or acoustic coupling, addressing longstanding limitations of conventional absorption-based and scattering-based imaging modalities.Two prototype designs were developed using image guide fiber (IGF) technology and achromatic graded-index (GRIN) lenses, with systematic de-risking experiments guiding their evolution. The first prototype (P1) achieved a resolution of ~1 µm and signal-to-noise ratio (SNR) of 22 dB, demonstrating the feasibility of high-fidelity PARS imaging within a 1.6mm outer diameter (OD) device footprint. A second design (P2) was introduced to address constraints in working distance and imaging depth for in vivo use, trading resolution for improved accessibility in biological tissues. This work establishes a novel platform for PARS miniaturization and integration with widefield endoscopy, positioning the technology for future applications, including real-time, in situ virtual biopsies, blood oxygenation measurement, and surgical guidance within internal bodily cavities. The results represent a foundational advancement in the translation of PARS microscopy to clinical settings and lay the groundwork for real-time, high-resolution endoscopic diagnostics.
dc.identifier.urihttps://hdl.handle.net/10012/21703
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectEndomicroscopy
dc.subjectPhoton absorption remote sensing
dc.subjectPARS
dc.titleTowards the development of an all-optical, non-contact, photon absorption remote sensing (PARS) endomicroscope for blood vasculature imaging
dc.typeMaster Thesis
uws-etd.degreeMaster of Applied Science
uws-etd.degree.departmentSystems Design Engineering
uws-etd.degree.disciplineSystem Design Engineering
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms4 months
uws.contributor.advisorReza, Parsin
uws.contributor.affiliation1Faculty of Engineering
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Warren_Alkris.pdf
Size:
3.9 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: