Dynamics and phases of matter in open quantum many-body systems

Loading...
Thumbnail Image

Date

2024-06-24

Authors

Sang, Shengqi

Advisor

Hsieh, Timothy
Melko, Roger

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The thesis is divided into two parts, both focusing on the topic of open quantum many-body systems. The first part explores the properties of quantum circuits interspersed with measurements. Tuned by the frequency of measurements, the circuit exhibits two stable dynamical phases: a weakly-monitored phase and a strongly-monitored one. For the former case, we analyze its non-equilibrium properties and unveil that it exhibits physical length scales that grow super-linearly with time. For the latter case, we demonstrate that it can maintain non-trivial quantum order when symmetries are present. The second part addresses phases of matter for mixed many-body states. We propose a real-space renormalization group approach for mixed states and apply it to derive phase diagrams for various examples. For decohered topological codes, we establish a precise relationship between the decodability and the topological phase transitions. Lastly, we introduce the notion of 'Markov length', a length scale that measures the locality of correlation, as a diagnostic for the stability of mixed state phases.

Description

Keywords

physics

LC Keywords

Citation