On the Crossing Numbers of Complete Graphs

Loading...
Thumbnail Image

Date

2006

Authors

Pan, Shengjun

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

In this thesis we prove two main results. The Triangle Conjecture asserts that the convex hull of any optimal rectilinear drawing of <em>K<sub>n</sub></em> must be a triangle (for <em>n</em> &ge; 3). We prove that, for the larger class of pseudolinear drawings, the outer face must be a triangle. The other main result is the next step toward Guy's Conjecture that the crossing number of <em>K<sub>n</sub></em> is $(1/4)[n/2][(n-1)/2][(n-2)/2][(n-3)/2]$. We show that the conjecture is true for <em>n</em> = 11,12; previously the conjecture was known to be true for <em>n</em> &le; 10. We also prove several minor results.

Description

Keywords

Mathematics, graph, crossing number, Guy's Conjecture

LC Subject Headings

Citation