Applications of the Quantum Kernel Method on a Superconducting Quantum Processor

Loading...
Thumbnail Image

Date

2020-05-29

Authors

Peters, Evan

Advisor

Kempf, Achim

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The widespread benefits of classical machine learning along with promised speedups by quantum algorithms over their best performing classical counterparts have motivated development of quantum machine learning algorithms that combine these two approaches. Quantum Kernel Methods (QKMs) [22, 49] describe one such combination, which seeks to leverage the high dimensional Hilbert space over quantum states to perform classification on encoded classical data. In this work I present an analysis of QKM algorithms used to encode and classify real data using a quantum processor, aided by a suite of custom noise models and hardware optimizations. I introduce and validate techniques for error mitigation and readout error correction designed specifically for this algorithm/hardware combination. Though I do not achieve high accuracy with one type of QKM-based classifier, I provide evidence for possible fundamental limitations to the QKM as well as hardware limitations that are unaccounted for by a reasonable Markovian noise model.

Description

Keywords

quantum machine learning, quantum computing, machine learning

LC Subject Headings

Citation