Quantum Walks on Oriented Graphs

dc.contributor.authorLato, Sabrina
dc.date.accessioned2019-01-11T15:19:05Z
dc.date.available2019-01-11T15:19:05Z
dc.date.issued2019-01-11
dc.date.submitted2019-01-08
dc.description.abstractThis thesis extends results about periodicity and perfect state transfer to oriented graphs. We prove that if a vertex a is periodic, then elements of the eigenvalue support lie in Z √∆ for some squarefree negative integer ∆. We find an infinite family of orientations of the complete graph that are periodic. We find an example of a graph with both perfect state transfer and periodicity that is not periodic at an integer multiple of the period, and we prove and use Gelfond-Schneider Theorem to show that every oriented graph with perfect state transfer between two vertices will have both vertices periodic. We find a complete characterization of when perfect state transfer can occur in oriented graphs, and find a new example of a graph where one vertex has perfect state transfer to multiple other vertices.en
dc.identifier.urihttp://hdl.handle.net/10012/14338
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectquantum walksen
dc.subjectgraphsen
dc.titleQuantum Walks on Oriented Graphsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws-etd.degree.disciplineCombinatorics and Optimizationen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorGodsil, Chris
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lato_Sabrina.pdf
Size:
480.58 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: