The Libraries will be performing routine maintenance on UWSpace on July 15th-16th, 2025. UWSpace will be available, though users may experience service lags during this time. We recommend all users avoid submitting new items to UWSpace until maintenance is completed.
 

Quantum Walks on Oriented Graphs

dc.contributor.advisorGodsil, Chris
dc.contributor.authorLato, Sabrina
dc.date.accessioned2019-01-11T15:19:05Z
dc.date.available2019-01-11T15:19:05Z
dc.date.issued2019-01-11
dc.date.submitted2019-01-08
dc.description.abstractThis thesis extends results about periodicity and perfect state transfer to oriented graphs. We prove that if a vertex a is periodic, then elements of the eigenvalue support lie in Z √∆ for some squarefree negative integer ∆. We find an infinite family of orientations of the complete graph that are periodic. We find an example of a graph with both perfect state transfer and periodicity that is not periodic at an integer multiple of the period, and we prove and use Gelfond-Schneider Theorem to show that every oriented graph with perfect state transfer between two vertices will have both vertices periodic. We find a complete characterization of when perfect state transfer can occur in oriented graphs, and find a new example of a graph where one vertex has perfect state transfer to multiple other vertices.en
dc.identifier.urihttp://hdl.handle.net/10012/14338
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectquantum walksen
dc.subjectgraphsen
dc.titleQuantum Walks on Oriented Graphsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws-etd.degree.disciplineCombinatorics and Optimizationen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorGodsil, Chris
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lato_Sabrina.pdf
Size:
480.58 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: