Applications of Machine Learning on Econometrics for Two-stage Regression, Bias-adjusted Inference with Unobserved Confounding, and Test for High Dimensionality
Loading...
Date
2024-08-19
Authors
Advisor
Chen, Tao
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
Nonparametric approaches have been extensively studied and applied when no assumption is made regarding the model specification. More generally, a sieve can be constructed as a collection of subsets of finite-dimensional approximating parameter spaces, over which the target function is estimated by an optimization of fitting without demanding a parametric specification. Although the concept of sieves is devised in such a general way, classic sieve estimation in literature has been mostly focusing on single-layer approximations. When the target functions are of intricate patterns, however, these single-layer estimators show limited capability despite allowance for data-generated sieve bases, whereas characterizing different attributes of the target functions progressively through multiple layers is often more sensible. Deep neural networks (DNNs) offer a multi-layer extension of the traditional sieves by modelling the connections among variables through data transformations from one layer to another. DNNs have a larger freedom than the single-layer ones in increasing the sieve complexity to ensure consistent estimation while maintaining a relatively simple structure in each layer for feasible estimation. This thesis contains three chapters developing methodologies and motivating applications of DNNs on Econometrics for two-stage regression, bias-adjusted inference with unobserved confounding, and test for high dimension.