Hamilton Paths in Generalized Petersen Graphs
dc.contributor.author | Pensaert, William | en |
dc.date.accessioned | 2006-08-22T14:20:02Z | |
dc.date.available | 2006-08-22T14:20:02Z | |
dc.date.issued | 2002 | en |
dc.date.submitted | 2002 | en |
dc.description.abstract | This thesis puts forward the conjecture that for <i>n</i> > 3<i>k</i> with <i>k</i> > 2, the generalized Petersen graph, <i>GP</i>(<i>n,k</i>) is Hamilton-laceable if <i>n</i> is even and <i>k</i> is odd, and it is Hamilton-connected otherwise. We take the first step in the proof of this conjecture by proving the case <i>n</i> = 3<i>k</i> + 1 and <i>k</i> greater than or equal to 1. We do this mainly by means of an induction which takes us from <i>GP</i>(3<i>k</i> + 1, <i>k</i>) to <i>GP</i>(3(<i>k</i> + 2) + 1, <i>k</i> + 2). The induction takes the form of mapping a Hamilton path in the smaller graph piecewise to the larger graph an inserting subpaths we call <i>rotors</i> to obtain a Hamilton path in the larger graph. | en |
dc.format | application/pdf | en |
dc.format.extent | 183802 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/10012/1198 | |
dc.language.iso | en | en |
dc.pending | false | en |
dc.publisher | University of Waterloo | en |
dc.rights | Copyright: 2002, Pensaert, William. All rights reserved. | en |
dc.subject | Mathematics | en |
dc.subject | graph theory | en |
dc.subject | mathematics | en |
dc.subject | combinatorics | en |
dc.subject | Hamilton paths | en |
dc.subject | generalized Petersen graphs | en |
dc.title | Hamilton Paths in Generalized Petersen Graphs | en |
dc.type | Master Thesis | en |
uws-etd.degree | Master of Mathematics | en |
uws-etd.degree.department | Combinatorics and Optimization | en |
uws.peerReviewStatus | Unreviewed | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |
Files
Original bundle
1 - 1 of 1