Hamilton Paths in Generalized Petersen Graphs

dc.contributor.authorPensaert, Williamen
dc.date.accessioned2006-08-22T14:20:02Z
dc.date.available2006-08-22T14:20:02Z
dc.date.issued2002en
dc.date.submitted2002en
dc.description.abstractThis thesis puts forward the conjecture that for <i>n</i> > 3<i>k</i> with <i>k</i> > 2, the generalized Petersen graph, <i>GP</i>(<i>n,k</i>) is Hamilton-laceable if <i>n</i> is even and <i>k</i> is odd, and it is Hamilton-connected otherwise. We take the first step in the proof of this conjecture by proving the case <i>n</i> = 3<i>k</i> + 1 and <i>k</i> greater than or equal to 1. We do this mainly by means of an induction which takes us from <i>GP</i>(3<i>k</i> + 1, <i>k</i>) to <i>GP</i>(3(<i>k</i> + 2) + 1, <i>k</i> + 2). The induction takes the form of mapping a Hamilton path in the smaller graph piecewise to the larger graph an inserting subpaths we call <i>rotors</i> to obtain a Hamilton path in the larger graph.en
dc.formatapplication/pdfen
dc.format.extent183802 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10012/1198
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.rightsCopyright: 2002, Pensaert, William. All rights reserved.en
dc.subjectMathematicsen
dc.subjectgraph theoryen
dc.subjectmathematicsen
dc.subjectcombinatoricsen
dc.subjectHamilton pathsen
dc.subjectgeneralized Petersen graphsen
dc.titleHamilton Paths in Generalized Petersen Graphsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wpjpensaert2002.pdf
Size:
179.49 KB
Format:
Adobe Portable Document Format