Chemo-rheological Characterization of Asphalt Binders Using Different Aging Processes

No Thumbnail Available

Date

2025-03-17

Advisor

Baaj, Hassan
Tavassoti, Pejoohan

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The performance and longevity of asphalt pavements depend heavily on the properties of asphalt binders, which are affected by aging, binder modifications, and the incorporation of reclaimed asphalt pavement (RAP) materials. However, significant gaps exist in understanding the long-term chemical and rheological changes induced by aging processes (particularly with respect to differences between thermo-oxidative aging and UV exposure), and in the use/standardization of chemical analytical techniques such as Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy for binder characterization. Furthermore, the behaviour in RAP-virgin binder blends, along with the influence of bio-based rejuvenators and anti-aging additives under different aging conditions, remains underexplored. Addressing these gaps are crucial to developing more durable, sustainable pavements. This thesis bridges these research gaps through comprehensive investigation of chemo-rheological binder characterization, combining experimental testing with advanced analytical tools and varying aging methods. The findings offer essential insights into binder aging, rejuvenation strategies, and modification techniques, with significant implications for pavement durability and environmental sustainability. The first chapter presents an evaluation of Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy combined with functional group and multivariate analysis techniques to characterize asphalt binders. The research identifies challenges in repeatability across binder sources and aging states demonstrating the importance of standardized protocols for improving reliability. Repeatability as described by AASHTO standards is listed in the precision and bias statement as single operator precision. This is the allowable difference in two test results measured under the repeatability conditions (same asphalt binder, measured by the same operator, on the same piece of equipment in the same lab). Principal Component Analysis (PCA) and k-means clustering successfully classified binder types and aging states, with large quantity (LQ) sample preparation yielding more consistent results than small quantity (SQ) preparation. These findings underscore the need for uniform procedures in binder analysis, addressing inconsistencies prevalent in the current literature. The second part of the thesis investigates the impact of Styrene-Butadiene-Styrene (SBS) polymer modification on binder performance and oxidative resistance. Using Nuclear Magnetic Resonance (NMR) and ATR-FTIR spectroscopy, along with PCA and Partial Least Squares Regression (PLSR), the research highlights the ability of SBS to enhance high-temperature performance and slow thermo-oxidative aging. This work not only confirms previous findings on SBS but also provides new insights into the molecular interactions contributing to aging resistance. The study fills a gap in understanding how SBS-modified binders behave under various aging scenarios, offering a deeper perspective on polymer-modified asphalt technologies. The thesis also addresses a critical gap related to UV-induced aging, which has been underexplored in comparison to thermo-oxidative aging. A novel UV aging chamber was developed to simulate real-world environmental conditions, incorporating UV exposure, water spray cycles, and controlled heating at 70°C. Comparative analysis revealed that different additives exhibit varying effectiveness under UV and thermo-oxidative conditions. Zinc diethyldithiocarbamate (ZDC) showed strong resistance to thermo-oxidative aging but limited efficacy under UV aging, while ascorbic acid (Vit. C) accelerated aging under UV exposure, contrary to expectations. These findings emphasize the challenges involved in designing effective anti-aging strategies for asphalt binders, demonstrating the value of combining conventional rheological tests with spectroscopic techniques and further highlighting the need for more targeted approaches to additive selection and development. This thesis advances the understanding of asphalt binder behaviour and aging processes by integrating chemical, rheological, and multivariate analysis techniques. It offers critical contributions to the standardization of binder characterization protocols, the optimization of polymer-modified asphalt technologies, and the development of more effective anti-aging strategies. The research also demonstrates the potential of machine learning and artificial intelligence (AI) in predicting binder performance from spectroscopic data using multivariate analysis, paving the way for future innovations in asphalt binder characterization. In conclusion, the work in this thesis addresses significant gaps in the literature, providing new insights into aging mechanisms, additive/rejuvenation strategies, and RAP binder interactions. By combining chemical analysis, rheological testing, and multivariate techniques, this research contributes both to academic knowledge and practical pavement engineering, promoting the development of more sustainable, long-lasting asphalt pavements.

Description

Keywords

asphalt, bitumen, pavement, materials, aging, chemo-rheological, Multivariate Analysis

LC Subject Headings

Citation