The Libraries will be performing routine maintenance on UWSpace on July 15th-16th, 2025. UWSpace will be available, though users may experience service lags during this time. We recommend all users avoid submitting new items to UWSpace until maintenance is completed.
 

Approximation Algorithms for (S,T)-Connectivity Problems

Loading...
Thumbnail Image

Date

2010-08-03T18:41:07Z

Authors

Laekhanukit, Bundit

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

We study a directed network design problem called the $k$-$(S,T)$-connectivity problem; we design and analyze approximation algorithms and give hardness results. For each positive integer $k$, the minimum cost $k$-vertex connected spanning subgraph problem is a special case of the $k$-$(S,T)$-connectivity problem. We defer precise statements of the problem and of our results to the introduction. For $k=1$, we call the problem the $(S,T)$-connectivity problem. We study three variants of the problem: the standard $(S,T)$-connectivity problem, the relaxed $(S,T)$-connectivity problem, and the unrestricted $(S,T)$-connectivity problem. We give hardness results for these three variants. We design a $2$-approximation algorithm for the standard $(S,T)$-connectivity problem. We design tight approximation algorithms for the relaxed $(S,T)$-connectivity problem and one of its special cases. For any $k$, we give an $O(\log k\log n)$-approximation algorithm, where $n$ denotes the number of vertices. The approximation guarantee almost matches the best approximation guarantee known for the minimum cost $k$-vertex connected spanning subgraph problem which is $O(\log k\log\frac{n}{n-k})$ due to Nutov in 2009.

Description

Keywords

algorithm, approximation algorithm, connectivity, directed graph

LC Subject Headings

Citation