Simple Drawings of Kn from Rotation Systems

dc.contributor.authorSullivan, Matthew A.
dc.date.accessioned2021-10-06T18:22:34Z
dc.date.available2021-10-06T18:22:34Z
dc.date.issued2021-10-06
dc.date.submitted2021-09-24
dc.description.abstractA complete rotation system on n vertices is a collection of n cyclic permutations of the elements [n]\{i}, for i∈[n]. If D is a drawing of a labelled graph, then a rotation at vertex v is the cyclic ordering of the edges at v. In particular, the collection of all vertex rotations of a simple drawing of Kn is a complete rotation system. Can we characterize when a complete rotation system can be represented as a simple drawing of Kn (a.k.a. realizable)? This thesis is motivated by two specific results on complete rotation systems. The first motivating theorem was published by Kyncl in 2011, who, using homotopy, proved as a corollary that if all complete 6-vertex rotation systems of a complete n-vertex rotation system H are realizable, then H is realizable. Combined with communications with Aichholzer, Kyncl determined that complete realizable n-vertex rotation systems are characterized by their complete 5-vertex rotation systems. The second motivating theorem was published by Gioan in 2005, he proved that if two simple drawings of the complete graph D and D′ have the same rotation system, then there is a sequence of Reidemeister III moves that transforms D into D′. Motivated by these results, we prove both facts combinatorially by sequentially drawing the edge crossings of an edge to form a simple drawing. Such a method can be used to prove both theorems, generate every simple drawing of a complete rotation system, or find a non-realizable complete 5-vertex rotation system in any complete rotation system (when one exists).en
dc.identifier.urihttp://hdl.handle.net/10012/17627
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectgraph theoryen
dc.subjectcombinatoricsen
dc.subjectgraph drawingsen
dc.subject.lcshGraph theoryen
dc.subject.lcshCombinatorial analysisen
dc.titleSimple Drawings of Kn from Rotation Systemsen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws-etd.degree.disciplineCombinatorics and Optimizationen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorRichter, R. Bruce
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sullivan_Matthew.pdf
Size:
607.05 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: