A Bias-Variance-Privacy Trilemma for Statistical Estimation

dc.contributor.authorRegehr, Matthew
dc.date.accessioned2023-08-28T19:38:20Z
dc.date.available2023-08-28T19:38:20Z
dc.date.issued2023-08-28
dc.date.submitted2023-08-23
dc.description.abstractThe canonical algorithm for differentially private mean estimation is to first clip the samples to a bounded range and then add noise to their empirical mean. Clipping controls the sensitivity and, hence, the variance of the noise that we add for privacy. But clipping also introduces statistical bias. We prove that this tradeoff is inherent: no algorithm can simultaneously have low bias, low variance, and low privacy loss for arbitrary distributions. On the positive side, we show that unbiased mean estimation is possible under approx- imate differential privacy if we assume that the distribution is symmetric. Relaxing to approximate differential privacy is necessary. We show that, even when the data is sampled from a Gaussian, unbiased mean estimation is impossible under pure or concentrated differential privacy.en
dc.identifier.urihttp://hdl.handle.net/10012/19784
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectDifferential Privacyen
dc.subjectStatistical Biasen
dc.subjectMean Estimationen
dc.titleA Bias-Variance-Privacy Trilemma for Statistical Estimationen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorKamath, Gautam
uws.contributor.advisorBen-David, Shai
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Regehr_Matthew.pdf
Size:
566.48 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: