Total Relation Recall: High-Recall Relation Extraction

dc.contributor.authorLiu, Xinyu
dc.date.accessioned2021-04-28T19:53:49Z
dc.date.available2021-04-28T19:53:49Z
dc.date.issued2021-04-28
dc.date.submitted2021-04-16
dc.description.abstractAs Knowledge Graphs (KGs) become important in a wide range of applications, including question-answering and recommender systems, more and more enterprises have recognized the value of constructing KGs with their own data. While enterprise data consists of structured and unstructured data, companies primarily focus on structured ones, which are easier to exploit than unstructured ones. However, most enterprise data are unstructured, including intranet, documents, and emails, where plenty of business insights live. Therefore, companies would like to utilize unstructured data as well, and KGs are an excellent way to collect and organize information from unstructured data. In this thesis, we introduce a novel task, Total Relation Recall (TRR), that leverages the enterprise's unstructured documents to build KGs using high-recall relation extraction. Given a target relation and its relevant information, TRR aims to extract all instances of such relation from the given documents. We propose a Python-based system to address this task. To evaluate the effectiveness of our system, we conduct experiments on 12 different relations with two news article corpora. Moreover, we conduct an ablation study to investigate the impact of natural language processing (NLP) features.en
dc.identifier.urihttp://hdl.handle.net/10012/16917
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectrelation extractionen
dc.subjecthigh recallen
dc.titleTotal Relation Recall: High-Recall Relation Extractionen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorLin, Jimmy
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Liu_Xinyu.pdf
Size:
16.23 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: