Topics in the Geometry of Special Riemannian Structures

dc.contributor.authorIliashenko, Anton
dc.date.accessioned2024-07-26T14:39:31Z
dc.date.available2024-07-26T14:39:31Z
dc.date.issued2024-07-26
dc.date.submitted2024-07-21
dc.description.abstractThe thesis consists of two chapters. The first chapter is the paper named “Betti numbers of nearly G₂ and nearly Kähler 6-manifolds with Weyl curvature bounds” which is now in the journal Geometriae Dedicata. Here we use the Weitzenböck formulas to get information about the Betti numbers of compact nearly G₂ and compact nearly Kähler 6-manifolds. First, we establish estimates on two curvature-type self adjoint operators on particular spaces assuming bounds on the sectional curvature. Then using the Weitzenböck formulas on harmonic forms, we get results of the form: if certain lower bounds hold for these curvature operators then certain Betti numbers are zero. Finally, we combine both steps above to get sufficient conditions of vanishing of certain Betti numbers based on the bounds on the sectional curvature. The second chapter is the paper written with my supervisor Spiro Karigiannis named “A special class of k-harmonic maps inducing calibrated fibrations”, to appear in the journal Mathematical Research Letters. Here we consider two special classes of k-harmonic maps between Riemannian manifolds which are related to calibrated geometry, satisfying a first order fully nonlinear PDE. The first is a special type of weakly conformal map u:(Lᵏ,g)→(Mⁿ,h) where k≤n and α is a calibration k-form on M. Away from the critical set, the image is an α-calibrated submanifold of M. These were previously studied by Cheng–Karigiannis–Madnick when α was associated to a vector cross product, but we clarify that such a restriction is unnecessary. The second, which is new, is a special type of weakly horizontally conformal map u:(Mⁿ,h)→(Lᵏ,g) where n≥k and α is a calibration (n-k)-form on M. Away from the critical set, the fibres u⁻¹{u(x)} are α-calibrated submanifolds of M. We also review some previously established analytic results for the first class; we exhibit some explicit noncompact examples of the second class, where (M,h) are the Bryant–Salamon manifolds with exceptional holonomy; we remark on the relevance of this new PDE to the Strominger–Yau–Zaslow conjecture for mirror symmetry in terms of special Lagrangian fibrations and to the G₂ version by Gukov–Yau–Zaslow in terms of coassociative fibrations; and we present several open questions for future study.en
dc.identifier.urihttp://hdl.handle.net/10012/20742
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectRiemannian geometryen
dc.subjectBetti numbersen
dc.subjectNearly G₂ manifolden
dc.subjectNearly Kähler manifolden
dc.subjectCalibrated geometryen
dc.subjectSectional curvatureen
dc.subjectConformal geometryen
dc.subjectk-harmonic mapsen
dc.titleTopics in the Geometry of Special Riemannian Structuresen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentPure Mathematicsen
uws-etd.degree.disciplinePure Mathematicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorKarigiannis, Spiro
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Iliashenko_Anton.pdf
Size:
674.73 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: