Machine Learning Model for Repurposing Drugs to Target Viral Diseases

dc.contributor.authorWilliams, Justine
dc.date.accessioned2023-01-26T14:35:19Z
dc.date.available2023-01-26T14:35:19Z
dc.date.issued2023-01-26
dc.date.submitted2023-01-24
dc.description.abstractWith recent events, such as the Covid-19 pandemic, it is increasingly important to develop strategies to combat viral diseases. Due to technological advancements, computer-aided drug design and machine learning (ML)-based hit identification strategies have gained popularity. Applying these techniques to identify novel scaffolds and/or repurpose existing therapeutics for viral diseases is a promising approach. As an avenue to improve existing classification models for antiviral applications, this thesis aimed to make improvements to non-binding data selection within these models. We created a classification model using molecular fingerprints to assess the performance of machine learning predictions when the model is trained using randomly selected and rationally selected non-binding datasets. Our analyses revealed that machine learning predictions can be improved using a rational selection approach. We further used this approach and trained three machine learning models based on XGBoost, Random Forest, and Support Vector Machine to predict potential inhibitors for the SARS-CoV2 main protease (Mpro) enzyme. Probability-ranked hits from the combined model were further analyzed using classical structure-based methods. The binding modes and affinities of the hits were identified using AutoDock Vina, and molecular dynamics simulations-enabled MM-GBSA calculations. The top hits identified from this multi-step screening approach revealed potential candidates that show improved affinity and stability than existing non-covalent Mpro inhibitors. Thus, our approach and the model could be useful for screening large ligand libraries.en
dc.identifier.urihttp://hdl.handle.net/10012/19123
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectChemistryen
dc.subjectMolecular Dockingen
dc.subjectMolecular Dynamicsen
dc.subjectDrug Discoveryen
dc.titleMachine Learning Model for Repurposing Drugs to Target Viral Diseasesen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentChemistryen
uws-etd.degree.disciplineChemistryen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorKalyaanamoorthy, Subha
uws.contributor.affiliation1Faculty of Scienceen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Williams_Justine.pdf
Size:
6 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections