UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Estimation and allocation of insurance risk capital

dc.contributor.authorKim, Hyun Tae
dc.date.accessioned2007-05-15T13:06:52Z
dc.date.available2007-05-15T13:06:52Z
dc.date.issued2007-05-15T13:06:52Z
dc.date.submitted2007-04-27
dc.description.abstractEstimating tail risk measures such as Value at Risk (VaR) and Conditional Tail Expectation (CTE) is a vital component in financial and actuarial risk management. The CTE is a preferred risk measure, due to coherence and a widespread acceptance in actuarial community. In particular we focus on the estimation of the CTE using both parametric and nonparametric approaches. In parametric case the conditional tail expectation and variance are analytically derived for the exponential distribution family and its transformed distributions. For small i.i.d. samples the exact bootstrap (EB) and the influence function are used as nonparametric methods in estimating the bias and the the variance of the empirical CTE. In particular, it is shown that the bias is corrected using the bootstrap for the CTE case. In variance estimation the influence function of the bootstrapped quantile is derived, and can be used to estimate the variance of any bootstrapped L-estimator without simulations, including the VaR and the CTE, via the nonparametric delta method. An industry model are provided by applying theoretical findings on the bias and the variance of the estimated CTE. Finally a new capital allocation method is proposed. Inspired by the allocation of the solvency exchange option by Sherris (2006), this method resembles the CTE allocation in its form and properties, but has its own unique features, such as managerbased decomposition. Through a numerical example the proposed allocation is shown to fail the no undercut axiom, but we argue that this axiom may not be aligned with the economic reality.en
dc.format.extent1258876 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10012/3011
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectrisk capitalen
dc.subjectcapital allocationen
dc.subject.programActuarial Scienceen
dc.titleEstimation and allocation of insurance risk capitalen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentStatistics and Actuarial Scienceen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
main2.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
237 B
Format:
Item-specific license agreed upon to submission
Description: