Exponential Stability of Maxwell’s Equations

dc.contributor.authorPoulin, Joseph
dc.date.accessioned2024-07-25T13:33:36Z
dc.date.available2024-07-25T13:33:36Z
dc.date.issued2024-07-25
dc.date.submitted2024-07-19
dc.description.abstractThe control of electromagnetic systems, which is governed by Maxwell's equations, is of interest for various reasons such as controlling plasma in a nuclear fusion reactor or magnetically trapping antiparticles for observation. Proving that a controlled system is exponentially stable is of particular interest, as exponential stability infers that the system will converge asymptotically to a steady state solution. A tool called the multiplier method is considered, which allows for exponential stability to be demonstrated by defining an auxiliary functional and proving it is bounded by the system energy and the energy's time derivative in a particular way. If an appropriate bound is shown, exponential stability is not only guaranteed, but the exponential function which bounds the L2 norm of the system variables will be fully determined in terms of the systems parameters. Currently, there is ongoing work into generalizing the multiplier method approach for a class of problems known as Port-Hamiltonian systems. This thesis aims to contribute to this work by formulating Maxwell's equations as a Port-Hamiltonian system, and using this formulation as a basis for determining how to choose the auxiliary functional needed in the multiplier method.en
dc.identifier.urihttp://hdl.handle.net/10012/20736
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleExponential Stability of Maxwell’s Equationsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentApplied Mathematicsen
uws-etd.degree.disciplineApplied Mathematicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorMorris, Kirsten
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Poulin_Joseph.pdf
Size:
474.85 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: