Enumerating matroid extensions

dc.contributor.authorRedlin Hume, Shayla
dc.date.accessioned2023-09-01T13:54:45Z
dc.date.available2023-09-01T13:54:45Z
dc.date.issued2023-09-01
dc.date.submitted2023-08-31
dc.description.abstractThis thesis investigates the problem of enumerating the extensions of certain matroids. A matroid M is an extension of a matroid N if M delete e is equal to N for some element e of M. Similarly, a matroid M is a coextension of a matroid N if M contract e is equal to N for some element e of M. In this thesis, we consider extensions and coextensions of matroids in the classes of graphic matroids, representable matroids, and frame matroids. We develop a general strategy for counting the extensions of matroids which translates the problem into counting stable sets in an auxiliary graph. We apply this strategy to obtain asymptotic results on the number of extensions and coextensions of certain graphic matroids, projective geometries, and Dowling geometries.en
dc.identifier.urihttp://hdl.handle.net/10012/19829
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectmatroiden
dc.subjectextensionsen
dc.subjectcoextensionsen
dc.subjectenumerationen
dc.subjectgraphic matroidsen
dc.subjectprojective geometriesen
dc.subjectDowling geometriesen
dc.subjectcontainer methoden
dc.titleEnumerating matroid extensionsen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws-etd.degree.disciplineCombinatorics and Optimizationen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorNelson, Peter
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RedlinHume_Shayla.pdf
Size:
944.5 KB
Format:
Adobe Portable Document Format
Description:
PhD Thesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: