Decomposition of Finite-Dimensional Matrix Algebras over \mathbb{F}_{q}(y)

dc.contributor.authorHuang, Ruitong
dc.date.accessioned2010-08-20T19:48:32Z
dc.date.available2010-08-20T19:48:32Z
dc.date.issued2010-08-20T19:48:32Z
dc.date.submitted2010
dc.description.abstractComputing the structure of a finite-dimensional algebra is a classical mathematical problem in symbolic computation with many applications such as polynomial factorization, computational group theory and differential factorization. We will investigate the computational complexity and exhibit new algorithms for this problem over the field \mathbb{F}_{q}(y), where \mathbb{F}_{q} is the finite field with q elements. In this thesis we will present new efficient probabilistic algorithms for Wedderburn decomposition and the computation of the radical.en
dc.identifier.urihttp://hdl.handle.net/10012/5360
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectalgebraen
dc.subjectdecompositionen
dc.subjectradicalen
dc.subjectWedderburn decompositionen
dc.subject.programComputer Scienceen
dc.titleDecomposition of Finite-Dimensional Matrix Algebras over \mathbb{F}_{q}(y)en
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentSchool of Computer Scienceen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4uw-ethesis.pdf
Size:
613.67 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
249 B
Format:
Item-specific license agreed upon to submission
Description: