A Primal Dual Algorithm On 2-Steiner Graphs

dc.contributor.authorBuckley, Matthew
dc.date.accessioned2018-01-23T22:33:09Z
dc.date.available2018-01-23T22:33:09Z
dc.date.issued2018-01-23
dc.date.submitted2018-01-23
dc.description.abstractThe Steiner Tree Problem is a fundamental network design problem, where the goal is to connect a subset of terminals of a given network at minimum cost. A major open question regarding this problem, is proving that the integrality gap of a certain linear program relaxation, called the bidirected cut relaxation (BCR), is strictly smaller than 2. In this thesis, we prove that (BCR) has integrality gap at most 5/3 for a subset of instances, which we call 2-Steiner instances, via a primal-dual method.en
dc.identifier.urihttp://hdl.handle.net/10012/12949
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleA Primal Dual Algorithm On 2-Steiner Graphsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws-etd.degree.disciplineCombinatorics and Optimizationen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorSanità, Laura
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Buckley_Matthew.pdf
Size:
554.53 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: