A Finite Element Investigation of Possible Mechanisms of Luminal Cell Escape from the Mammary Duct: An Initial Step in Breast Cancer Metastasis

dc.contributor.advisorBrodland, Wayne
dc.contributor.authorKang, Jae
dc.date.accessioned2017-06-14T16:09:13Z
dc.date.available2018-06-13T04:50:06Z
dc.date.issued2017-06-14
dc.date.submitted2017
dc.description.abstractCancer is an illness that kills some ten million people every year, and as cancer rates increase, a cure for metastatic disease is more necessary than ever. Breast cancer is the most common form of malignancy in the female population, with 1 in 8 women developing invasive ductal carcinoma (IDC) in their lifetime. The majority of cancer deaths are caused by metastasis, a process in which cancer cells spread throughout the body and invade multiple vital organs as a result of increased motility. Cell biomechanics is a nascent field in oncology, and it investigates cell movement and rearrangement in terms of mechanical forces and deformations. The Differential Interfacial Tension Hypothesis (DITH) provides a way to calculate the net tensions that subcellular components generate along cell boundaries and that give rise to deformation and rearrangement of individual cells and groups of cells. Finite element (FE) software can be used to model these forces and their interactions with each other. To date, this approach has made it possible to study a wide range of morphological phenomena, including wound healing, organ development and metastatic cell migration. The goal of this study was to use this software to investigate the escape of a single luminal epithelial (LE) cell from a mammary duct – the first stage of breast cancer metastasis. Mechanisms that were considered include: modified interfacial tensions (MIT), protrusions (P) and tension gradients (TG). The simulations showed that escape of a metastatic LE cell involves two consecutive stages – detachment from the mammary duct and migration through the extracellular matrix. The simulations showed that MIT alone can produce LE cell detachment, while protrusions alone or tension gradients alone can produce migration of cells through the ECM; Mechanisms can act in concert to speed escape and migration, and no single mechanism is able to produce both escape and migration. The simulations reflect behaviours seen in experiments in organoids and other in vitro systems, adding support for the simulation findings. Hopefully, the insights provided by this study will help lead to better understanding of the mechanics of cancer cell escape and migration, and to improved strategies for metastasis prevention.en
dc.identifier.urihttp://hdl.handle.net/10012/12010
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectDifferential Interfacial Tension Hypothesis (DITH)en
dc.subjectFinite Element Methoden
dc.subjectInvasive Ductal Carcinomaen
dc.subjectBreast Canceren
dc.subjectMetastasisen
dc.titleA Finite Element Investigation of Possible Mechanisms of Luminal Cell Escape from the Mammary Duct: An Initial Step in Breast Cancer Metastasisen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentCivil and Environmental Engineeringen
uws-etd.degree.disciplineCivil Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms12 monthsen
uws.contributor.advisorBrodland, Wayne
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kang_Jae.pdf
Size:
9.98 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: