Solitons with continuous symmetries

dc.contributor.authorLang, Christopher James
dc.date.accessioned2024-08-29T13:00:20Z
dc.date.available2024-08-29T13:00:20Z
dc.date.issued2024-08-29
dc.date.submitted2024-08-26
dc.description.abstractIn this thesis, we develop a framework for classifying symmetric points on moduli spaces using representation theory. We utilize this framework in a few case studies, but it has applications well beyond these cases. As a demonstration of the power of this framework, we use it to study various symmetric solitons: instantons as well as hyperbolic, singular, and Euclidean monopoles. Examples of these objects are hard to come by due to non-linear constraints. However, by applying this framework, we introduce a linear constraint, whose solution greatly simplifies the non-linear constraints. This simplification not only allows us to easily find a plethora of novel examples of these solitons, it also provides a framework for classifying such symmetric objects. As an example, by applying this method, we prove that the basic instanton is essentially the only instanton with two particular kinds of conformal symmetry. Additionally, we study the symmetry breaking of monopoles, a part of their topological classification. We prove a straightforward method for determining the symmetry breaking of a monopole and explicitly identify the symmetry breaking for all Lie groups with classical, simply Lie algebras. We also identify methods for doing the same for the exceptional simple Lie groups.
dc.identifier.urihttps://hdl.handle.net/10012/20906
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectgauge theory
dc.subjectrepresentation theory
dc.subjectLie theory
dc.titleSolitons with continuous symmetries
dc.typeDoctoral Thesis
uws-etd.degreeDoctor of Philosophy
uws-etd.degree.departmentPure Mathematics
uws-etd.degree.disciplinePure Mathematics
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.contributor.advisorCharbonneau, Benoit
uws.contributor.affiliation1Faculty of Mathematics
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lang_Christopher_James.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: