UWSpace staff members will be away from May 5th to 9th, 2025. We will not be responding to emails during this time. If there are any urgent issues, please contact GSPA at gsrecord@uwaterloo.ca. If any login or authentication issues arise during this time, please wait until UWSpace Staff members return on May 12th for support.
 

Infinite Sets of D-integral Points on Projective Algebrain Varieties

dc.contributor.authorShelestunova, Veronikaen
dc.date.accessioned2006-08-22T14:20:55Z
dc.date.available2006-08-22T14:20:55Z
dc.date.issued2005en
dc.date.submitted2005en
dc.description.abstractLet <em>X</em>(<em>K</em>) &sub; <strong>P</strong><sup><em>n</em></sup> (<em>K</em>) be a projective algebraic variety over <em>K</em>, and let <em>D</em> be a subset of <strong>P</strong><sup><em>n</em></sup><sub><em>OK</em></sub> such that the codimension of <em>D</em> with respect to <em>X</em> &sub; <strong>P</strong><sup><em>n</em></sup><sub><em>OK</em></sub> is two. We are interested in points <em>P</em> on <em>X</em>(<em>K</em>) with the property that the intersection of the closure of <em>P</em> and <em>D</em> is empty in <strong>P</strong><sup><em>n</em></sup><sub><em>OK</em></sub>, we call such points <em>D</em>-integral points on <em>X</em>(<em>K</em>). First we prove that certain algebraic varieties have infinitely many <em>D</em>-integral points. Then we find an explicit description of the complete set of all <em>D</em>-integral points in projective n-space over Q for several types of <em>D</em>.en
dc.formatapplication/pdfen
dc.format.extent252872 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10012/1192
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.rightsCopyright: 2005, Shelestunova, Veronika . All rights reserved.en
dc.subjectMathematicsen
dc.subjectIntegral pointsen
dc.subjectalgebraic varietiesen
dc.titleInfinite Sets of D-integral Points on Projective Algebrain Varietiesen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentPure Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
vshelest2005.pdf
Size:
246.95 KB
Format:
Adobe Portable Document Format