Machine Learning for Streamflow Prediction

dc.contributor.authorGauch, Martin
dc.date.accessioned2020-04-16T17:47:27Z
dc.date.available2020-04-16T17:47:27Z
dc.date.issued2020-04-16
dc.date.submitted2020-04-07
dc.description.abstractAccurate prediction of streamflow—the amount of water flowing past a stream section at a given time—is a long-standing challenge in hydrology. Not only do researchers strive to understand the natural processes at play, the predictions are also vital for management of floods, irrigation control, or hydro-electric power generation. Traditional, physically-based models explicitly simulate the processes that drive streamflow, but their predictions are often inaccurate, especially when predicting multiple watersheds with one model. In this thesis, we study applications of machine learning to streamflow prediction: We present two case studies where data-driven models outperform physically-based models. Although more accurate, these data-driven techniques lack interpretability compared to physically-based models. Hence, we further explore first steps towards combining physically-based and data-driven approaches into a single model that preserves each component's advantages. Lastly, we quantify the effects of limited training data on the quality of data-driven predictions. We show that models benefit from additional data not only in terms of longer time periods, but also in terms of additional basins. This is a promising result towards transferring trained models to regions with limited or no training data. As all of the above research directions hinge on the access to geospatial datasets, we precede their examination with the development of the Cuizinart, a cloud-based platform to disseminate and subset large environmental datasets.en
dc.identifier.urihttp://hdl.handle.net/10012/15758
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectmachine learningen
dc.subjectstreamflow predictionen
dc.subjecthydrologyen
dc.titleMachine Learning for Streamflow Predictionen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorLin, Jimmy
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gauch_Martin.pdf
Size:
6.72 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: