Unavoidable Minors of Large 5-Connected Graphs
dc.contributor.author | Shantanam, Abhinav | |
dc.date.accessioned | 2016-08-24T17:57:50Z | |
dc.date.available | 2016-08-24T17:57:50Z | |
dc.date.issued | 2016-08-24 | |
dc.date.submitted | 2016-08-18 | |
dc.description.abstract | This thesis shows that, for every positive integer $n \geq 5$, there exists a positive integer $N$ such that every $5-$connected graph with at least $N$ vertices has a minor isomorphic to one of thirty explicitly defined $5-$connected graphs $H_1(n), ..., H_{30}(n)$, each with at least $n$ vertices. | en |
dc.identifier.uri | http://hdl.handle.net/10012/10682 | |
dc.language.iso | en | en |
dc.pending | false | |
dc.publisher | University of Waterloo | en |
dc.subject | unavoidable minors | en |
dc.subject | 5-connected | en |
dc.title | Unavoidable Minors of Large 5-Connected Graphs | en |
dc.type | Master Thesis | en |
uws-etd.degree | Master of Mathematics | en |
uws-etd.degree.department | Combinatorics and Optimization | en |
uws-etd.degree.discipline | Combinatorics and Optimization | en |
uws-etd.degree.grantor | University of Waterloo | en |
uws.contributor.advisor | Geelen, Jim | |
uws.contributor.affiliation1 | Faculty of Mathematics | en |
uws.peerReviewStatus | Unreviewed | en |
uws.published.city | Waterloo | en |
uws.published.country | Canada | en |
uws.published.province | Ontario | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |