A Sparse Random Feature Model for Signal Decomposition

dc.contributor.authorRichardson, Nicholas Joseph Emile
dc.date.accessioned2022-05-11T20:19:12Z
dc.date.available2022-05-11T20:19:12Z
dc.date.issued2022-05-11
dc.date.submitted2022-05-11
dc.description.abstractSignal decomposition and multiscale signal analysis provide useful tools for time-frequency analysis. In this thesis, an overview of the signal decomposition problem is given and popular methods are discussed. A novel signal decomposition algorithm is presented: Sparse Random Mode Decomposition (SRMD). This method sparsely represents a signal as a sum of random windowed-sinusoidal features before clustering the time-frequency localized features into the constituent modes. SRMD outperforms state-of-the-art methods on a variety of mathematical signals, and is applied to real-world astronomical and musical examples. Finally, we discuss a neural network approach to tackle challenging musical signals.en
dc.identifier.urihttp://hdl.handle.net/10012/18262
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.relation.urihttps://github.com/njericha/masters-thesisen
dc.relation.urihttps://github.com/GiangTTran/SparseRandomModeDecompositionen
dc.subjectoptimizationen
dc.subjectsignal processingen
dc.subjectsignal decompositionen
dc.subjectmachine learningen
dc.subjectcompressed sensingen
dc.titleA Sparse Random Feature Model for Signal Decompositionen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentApplied Mathematicsen
uws-etd.degree.disciplineApplied Mathematicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorGiang, Tran
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Richardson_NicholasJosephEmile.pdf
Size:
5.42 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: