A Sparse Random Feature Model for Signal Decomposition
dc.contributor.author | Richardson, Nicholas Joseph Emile | |
dc.date.accessioned | 2022-05-11T20:19:12Z | |
dc.date.available | 2022-05-11T20:19:12Z | |
dc.date.issued | 2022-05-11 | |
dc.date.submitted | 2022-05-11 | |
dc.description.abstract | Signal decomposition and multiscale signal analysis provide useful tools for time-frequency analysis. In this thesis, an overview of the signal decomposition problem is given and popular methods are discussed. A novel signal decomposition algorithm is presented: Sparse Random Mode Decomposition (SRMD). This method sparsely represents a signal as a sum of random windowed-sinusoidal features before clustering the time-frequency localized features into the constituent modes. SRMD outperforms state-of-the-art methods on a variety of mathematical signals, and is applied to real-world astronomical and musical examples. Finally, we discuss a neural network approach to tackle challenging musical signals. | en |
dc.identifier.uri | http://hdl.handle.net/10012/18262 | |
dc.language.iso | en | en |
dc.pending | false | |
dc.publisher | University of Waterloo | en |
dc.relation.uri | https://github.com/njericha/masters-thesis | en |
dc.relation.uri | https://github.com/GiangTTran/SparseRandomModeDecomposition | en |
dc.subject | optimization | en |
dc.subject | signal processing | en |
dc.subject | signal decomposition | en |
dc.subject | machine learning | en |
dc.subject | compressed sensing | en |
dc.title | A Sparse Random Feature Model for Signal Decomposition | en |
dc.type | Master Thesis | en |
uws-etd.degree | Master of Mathematics | en |
uws-etd.degree.department | Applied Mathematics | en |
uws-etd.degree.discipline | Applied Mathematics | en |
uws-etd.degree.grantor | University of Waterloo | en |
uws-etd.embargo.terms | 0 | en |
uws.contributor.advisor | Giang, Tran | |
uws.contributor.affiliation1 | Faculty of Mathematics | en |
uws.peerReviewStatus | Unreviewed | en |
uws.published.city | Waterloo | en |
uws.published.country | Canada | en |
uws.published.province | Ontario | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |