Computational and Spectroscopic Investigations of Intermolecular Interactions in Clusters

Loading...
Thumbnail Image

Date

2019-08-15

Authors

Carr, Patrick

Advisor

Hopkins, W. Scott

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

In this thesis, the study of intermolecular interactions within cluster systems is presented. Covalently and non-covalently bound clusters possess oftentimes unique and unexpected properties which can be tuned by adjustment of size, composition, and geometry to target desired properties for use in nanotechnologies. Additionally, clusters present a computationally tractable model of bulk systems such as reactive sites on bulk heterogeneous catalysts. Infrared spectra have been collected of various clusters and theoretical computations have been conducted to interpret spectra and provide predictions for other properties to guide future works. Investigations of the forces binding cluster species together are conducted to provide insight into the fundamental underpinning of molecular properties with applications in the field of nanomaterial design. A variety of clusters have been studied here. Computational studies of size-dependency in nitrous oxide reactions with rhodium sulphide clusters have been conducted. Barriers to competing N2O desorption and decomposition have been ascertained and compared with and without thermal corrections. Inclusion of the sulphur atom is found to alter which reaction pathway is preferred, as seen by comparison with analogous studies on pure rhodium clusters. Infrared multiple photon dissociation (IRMPD) spectroscopy is utilized to probe the additional clusters; a series of palladium coordination complexes and a series of clusters containing icosahedral [B12X12]2─ (X = H, halogen) cages complexed with a cationic transition metal atom, a cationic amine, or a neutral polar cyclohexane-based compound. This IRMPD technique successfully produced infrared spectra for these species in the gas phase and unique properties were observed for each cluster upon IR induced dissociation. Density functional theory calculations determined geometries, dissociation thresholds, and interpreted IR spectra. Additional theoretical tools quantified molecular orbital interactions and topographical parameters of the electron density.

Description

Keywords

Infrared multiple photon dissociation, Density functional theory, Clusters, Transition metals, Icosahedral dodecaborate dianion, Computational chemistry, Vibrational spectroscopy

LC Keywords

Citation

Collections