Differentially Private Simple Genetic Algorithms

dc.contributor.authorHumphries, Thomas
dc.date.accessioned2021-12-13T19:12:43Z
dc.date.available2021-12-13T19:12:43Z
dc.date.issued2021-12-13
dc.date.submitted2021-11-26
dc.description.abstractWe study the differentially private (DP) selection problem, where the goal is to select an item from a set of candidates that approximately maximizes a given objective function. The most common solution to this problem is to use the exponential mechanism. The issue with this approach is that the exponential mechanism must compute the objective function for all possible candidates in the domain. For many real-world problems, the length of the domain is exponential, making this approach impractical. Genetic algorithms (GAs) use the principles of evolution in nature to efficiently search through large domains and find the best candidate. However, current work applying DP to GAs exhibits poor utility and the results are difficult to reproduce. This work provides a new DP GA based on the popular simple genetic algorithm from the non-private literature. The biggest challenge is the number of selections made in the simple GA, each consuming a part of the privacy budget under DP. Our design reduces the number of selections and takes advantage of advanced composition techniques to overcome this challenge without impeding the heuristics that make the simple GA effective. We evaluate our solution over four different datasets using both convex and non-convex problems. The results demonstrate that our GA outperforms previous work in DP GAs as well as DP local search techniques. We further show that our DP GA offers increased utility across different datasets for efficiently scaling the exponential mechanism to large domains. Finally, we demonstrate that our general solution is competitive in utility or efficiency with state-of-the-art problem-specific solutions.en
dc.identifier.urihttp://hdl.handle.net/10012/17756
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.relation.urihttps://git.uwaterloo.ca/t3humphr/dp-simple-gaen
dc.subjectdifferential privacyen
dc.subjectgenetic algorithmsen
dc.titleDifferentially Private Simple Genetic Algorithmsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorKerschbaum, Florian
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Humphries_thomas.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: